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The Case for Probability Theory
I Probabilistic methods avoid the curse of dimensionality
I Gives access to probabilistic inequalities (useful in ergodic

dynamical systems, analyzing rare events)
I Can solve problem by projecting into higher space. Helpful for

optimization. Idea:

min f (x) ≤
∫

f (x)dµ (1)

Optimization + noise gives Euler-Lagrange equations in
some higher dim. space. ODE → PDE, PDE → master eqns.

I Seems useful in proof-building, e.g.:

A =⇒ B, a.s., in probability, in distribution (2)

I Phenomenon is fundamentally stochastic. How can you test
for this? Idea: run time/space correlation.
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Guiding Questions for This Talk

1. What is entropy and what is its role in learning?

2. Is a statistical manifold infinite dimensional?

3. What is the role of the prior in learning? Do we need it?

4. What is the rate of learning?

5. Can’t I just run an ordinary gradient descent?

6. What’s the connection with the Wasserstein distance?
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The Case for Information Manifolds

Why do we want to use manifolds to describe statistical inference
and learning? Manifolds allow for us to perform calculus, define
vectors, etc. This allows us more easily to perform:

I Asymptotic analysis. Where second-order asymptotics will
necessarily involve the concept of curvature.

I Projection theorems. By defining orthogonality.

I Gradient descent. Performing a gradient in parameter space
(low-dimensional).
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Entropy
In the information theoretical context, information is known as
Shannon information. Key points:

I Low probability event is highly informative.

I High probability event, being predictable imparts little
information.

I The information from event A and event B should be
additive, i.e. I (A ∩ B) = I (A) + I (B), for events A and B (in
the σ-algebra)

Choose: I (x) = − log (p(x)). But, rare events happen rarely. So,
the Shannon entropy from the system is weighted by how likely
the event is (the “average” info. given by a prob. distribution):

S = −
∫

p(x) log (p(x)) dx (3)
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Statistical Learning vs. Regression

Statistical learning involves a statistical model M = {p(x , ξ)},
parametrized by ξ, which is typically from a subset of Rn. The
problem is then, given data, find the “best” ξ. Can do this by:

1. Find f , such that ξ̂ = f (x1, . . . , xN) is a good estimator of ξ.

2. Formulating it as an optimization problem and proceeding
directly to find the optimal ξ (natural gradient)

Blackbox regression merely seeks to fit the unknown function, as
in machine learning. Ideal: robust regression, easily analyzable.
This depends on the data. Overfitting, predictability issues.

Discussion: other reasons to continue with the statistical
learning paradigm?
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Statistical Learning Point-of-View

We can extract information from comparing one distribution to
another and playing a game. Say, take a Gaussian prior to learn
the mean and variance. The KL-divergence tells you how quickly
you realize you may be sampling from the wrong distribution:

P[p̂; p] = e−NDKL[p̂:p] (4)

where, KL-divergence is:

DKL[p : q] = −
∫

log (q(x)) p(x)dx +

∫
log (p(x)) p(x)dx (5)

which is the diff. between the average info. of q assuming that it
is p and the average info. of p. This is asymmetric, which reflects
that learning from different dist. affects how quickly one learns.
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Rate of Learning

We try to learn:

ξ̂ = f (x1, . . . , xN) (6)

given an appropriate f such that ξ̂ → ξ. How far away are we from
the real parameter? Defining,

Vij = E
[
(ξ̂i − ξi )(ξ̂j − ξj)

]
(7)

we find that:

V ≥ 1

N
G−1 (8)

where G is the Fisher information matrix, which is the Hessian of
the KL-divergence calculated at a point in the statistical manifold.
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Rate of Learning

To estimate well, we need a good estimator and a good
statistical model. Given the maximum likelihood estimator and
the exponential family (which includes the Gaussians), we find
the CR-bound achieved:

V =
1

N
G−1 (9)

Note: further asymptotic analysis via geometry reveals that
deviations from second-order convergence comes from devia-
tion from the exponential family (statistical curvature) and
the curvature of the inverse image of the estimator f .
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Natural Gradient Approach

Q: Can’t we just do a steepest descent in the Riemannian
parameter space?
A: Yes, this is called the natural gradient approach.

I Advantages: Overcomes
issue of critical slowdown in
deep learning. Bigger neural
network is not necessarily
better.

I Disadvantages: Slow?
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Infinite-Dimensional Point of View — Speculation

Claim: Exponential families are good to use when we a priori
know very little, and for supervised learning problems.

Infinite-Dimensional Perspective:
Can make an infinite-dimensional manifold of probability measures
using Fisher-Rao metric.

I What if one wants to learn the statistical models? I.e. do
unsupervised learning? Then maybe it makes more sense to
work in the full space.

I What if one is just learning via a neural network and does not
really understand the parameter space?
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Q: What contributions has optimal transport made to learning?

A: Stay tuned for my next lecture...
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Questions?
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Some Useful Resources

I “Information Geometry and Its Applications” Amari,
Shun-ichi.

I “The Concentration of Measure Phenomenon” Ledoux,
Michel.

I “High-Dimensional Probability” Vershynin, Roman.

I “Pattern Recognition and Machine Learning” Christopher M.
Bishop
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Future Talks

Further potential topics:

I Adversarial attacks

I Data augmentation

I ???
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